Центр Статистических Технологий

Практическая статистика для аналитика - профессионально и просто

 

Мы осуществляем подготовку специалистов-аналитиков

 
 
 
Главная
О компании
Репутация
Консалтинг
Тренинги и семинары
 

РАСПИСАНИЕ тренингов и семинаров

Корпоративное обучение

Записаться на тренинг

 
Статистическое программное обеспечение
Статьи
Хорошие книги
 

Яндекс.Метрика

    

   
Обучение

Кластерный анализ

Кластерный анализ предназначен для разбиения совокупности объектов на однородные группы (кластеры или классы). По сути это задача многомерной классификации данных.

Существует около 100 разных алгоритмов кластеризации, однако наиболее часто используемые: иерархический кластерный анализ и кластеризация методов k-средних.

  Тренинги, в которых раскрывается глубина возможностей и алгоритмы использования
кластерного анализа:
 

Маркетинговые исследования на рынке В2С. Статистические инструменты анализа >>>

Маркетинговые исследования на рынке В2B. Статистические инструменты анализа >>>

Где применяется кластерный анализ? В маркетинге это сегментация конкурентов и потребителей. В менеджменте: разбиение персонала на различные по уровню мотивации группы, классификация поставщиков, выявление схожих производственных ситуаций, при которых возникает брак. В медицине - классификация симптомов, пациентов, препаратов. В социологии - разбиение респондентов на однородные группы. По сути кластерный анализ хорошо зарекомендовал себя во всех сферах жизнедеятельности человека.

Прелесть данного метода - он работает даже тогда, когда данных мало и невыполняются требования нормальности распределений случайных величин и другие трбования классических методов статистического анализа.

Поясним суть кластерного анализа, не прибегая к строгой терминологии:
допустим, Вы провели анкетирование сотрудников и хотите определить, каким образом можно наиболее эффективно управлять персоналом. То есть Вы хотите разделить сотрудников на группы и для каждой из них выделить наиболее эффективные рычаги управления. При этом различия между группами должны быть очевидными, а внутри группы респонденты должны быть максимально похожи.

Для решения задачи предлагается использовать иерархический кластерный анализ. В результате мы получим дерево, глядя на которое мы должны определиться на сколько классов (кластеров) мы хотим разбить персонал. Предположим, что мы решили разбить персонал на три группы, тогда для изучения респондентов, попавших в каждый кластер получим табличку примерно следующего содержания:

Кластер
Муж
30-50 лет
>50 лет
Рук.
Мед
Льготы
з/п
стаж
Образов.
1
80%
90%
5%
70%
10%
12%
95%
30%
30%
2
40%
35%
45%
13%
60%
70%
60%
40%
20%
3
50%
70%
10%
5%
30%
20%
70%
20%
50%

Поясним, как сформирована приведенная выше таблица:

В первом столбце расположен номер кластера - группы, данные по которой отражены в строке. Например, первый кластер на 80% составляют мужчины. 90% первого кластера попадают в возрастную категорию от 30 до 50 лет, а 12% респондентов считает, что льготы очень важны. И так далее.

Попытаемся составить портреты респондентов каждого кластера.

Первая группа - в основном мужчины зрелого возраста, занимающие руководящие позиции. Соцпакет (MED, LGOTI, TIME-своб время) их не интересует. Они предпочитают получать хорошую зарплату, а не помощь от работодателя.

Группа два наоборот отдает предпочтение соцпакету. Состоит она, в основном, из людей "в возрасте", занимающих невысокие посты. Зарплата для них безусловно важна, но есть и другие приоритеты.

Третья группа наиболее "молодая". В отличие от предыдущих двух, очевиден интерес к возможностям обучения и профессионального роста. У этой категории сотрудников есть хороший шанс в скором времени пополнить первую группу.

Таким образом, планируя кампанию по внедрению эффективных методов управления персоналом, очевидно, что в нашей ситуации можно увеличить соцпакет у второй группы в ущерб, к примеру, зарплате. Если говорить о том, каких специалистов следует направлять на обучение, то можно однозначно рекомендовать обратить внимание на третью группу.

 

Другие методы анализа
 
 
   
  Центр Статистических Технологий